Role of the Pharmacist in the Treatment of Diabetes

Presented by
Kevin B. Sneed, Pharm.D.
Dean, USF College of Pharmacy
USF Department of Family Medicine
Primary Care Clinical Pharmacist

Objectives

• Discuss the Prevalence of Diabetes in USA
• Brief Discussion of Metabolic Causes of Type 2 Diabetes
• Review Pharmacologic Treatment of Diabetes Mellitus Type 2
• Discuss the role of Pharmacogenomics in Medication Management
• Discuss the future role of the pharmacists as members of interprofessional teams in management of Diabetes
Diabetes Statistics- ADA (2007)

- **Total:** 23.6 million children and adults in the United States—7.8% of the population—have diabetes.
- **Diagnosed:** 17.9 million people
- **Undiagnosed:** 5.7 million people
- **Pre-diabetes:** 57 million people
- **New Cases:** 1.6 million new cases of diabetes are diagnosed in people aged 20 years and older each year.

Insulin Resistance

Type 2 diabetes
Aging
Obesity/ sedentary lifestyle

Other associated conditions
Genetics

Other conditions:
- acromegaly
- Cushing’s disease
- lipodystrophy
- anti-insulin receptors

Olefsky JM. In: Endocrinology. 2nd ed. 1989;1369-1388.
The Insulin Resistance Syndrome

Clinical Manifestations
- Central obesity
- Glucose intolerance
- Hypertension
- Atherosclerosis
- Polycystic Ovary Syndrome

Biochemical Abnormalities

<table>
<thead>
<tr>
<th>Carbohydrate:</th>
<th>Lipid:</th>
<th>Fibrinolysis:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulin resistance</td>
<td>High TG</td>
<td>Increased PAI-1</td>
</tr>
<tr>
<td>Hyperinsulinemia</td>
<td>Low HDL-C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Small, dense LDL particles</td>
<td></td>
</tr>
</tbody>
</table>

Pathophysiology of type 2 diabetes

- Defective β-cell secretion
- Excess glucose production
- Resistance to the action of insulin
- Excessive lipolysis
- Reduced glucose uptake

Insulin Resistance and β-Cell Dysfunction Produce Hyperglycemia in Type 2 Diabetes

β-Cell Dysfunction

- Pancreas
 - Islet β-Cell Degranulation; Reduced Insulin Content
 - Reduced Plasma Insulin
 - Increased Glucose Output

Insulin Resistance

- Elevated Plasma FFA
- Increased Lipolysis
- Muscle
- Adipose Tissue

Hyperglycemia

-> Decreased Glucose Transport & Activity (expression) of GLUT4

Endothelial Dysfunction & Insulin Resistance

Pharmacology-
The Domain of the Clinical Pharmacist

DM Type 1 vs. DM Type 2

Type 1
- Lean Patient
- Usually younger patient
- Ketonuria present
- Large loss of weight
- Family Hx Type 1
- Hyperglycemic with symptoms
- May have positive islet cell antibodies

Type 2
- Overweight
- Family Hx Type 2
- Native American, African American, Hispanic, Asian
- Nonketotic with hyperglycemia
- PCOS
- Waist circumference >35” in women >40” in men
Diabetes Medication Therapy…
Educational Points for Providers/ Patients
TYPE 2 DIABETES — A PROGRESSIVE DISEASE

Progressive Decline of β-Cell Function in the UKPDS

UKPDS

Effect of Treatment on HbA1c

Adapted from UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837-853, with permission.
TYPE 2 DIABETES . . . A PROGRESSIVE DISEASE
Natural History of Type 2 Diabetes

Oral Pharmacotherapy

- **Sulfonylureas** - Original 1st Line Oral Agents
 - 1st Generation - Chlorpropamide
- Sulfonylureas- 2nd Generation (50-200 times more potent than 1st generation)
 - Glyburide ➔ long half-life; caution in elderly
 (Diabeta, Micronase,Glynase)
 - Excreted in urine and bile
 - Glipizide - shorter t½;
 - Metabolized in Liver (90%) and Kidney (10%)
 - Glimepiride – properties of 2 previous medications
Sulfonylurea- Mechanism of Action

Beta cell membrane surface
Sulfonylurea binds
Potassium channel

Sulfonylurea- Mechanism of Action

Calcium channel

Gavin, S Medscape Image accessed 2/05
Sulfonylureas: Mechanism of Action

1. Intestine glucose absorption
2. Muscle and adipose tissue: glucose uptake
3. Pancreas: insulin secretion
4. Liver: hepatic glucose output

Blood glucose

Insulin resistance

Biguinides

- **Metformin**: (Glucophage, Glucophage XR)-
 - maximum effective dose= 2000mg/ day
- **Contraindications:**
 - Creatinine >1.4 women ; >1.5 Men ,
 - Active liver disease, binge drinkers .
- **May cause diarrhea or vomiting** .
- **Combination metformin/sulfonylurea**
 - Glucovance, Metaglip
Metformin: Mechanism of Action

1. Intestine glucose absorption
 - Insulin resistance
 - Blood glucose

2. Muscle and adipose tissue: glucose uptake
 - Metformin glucose utilization
 - Insulin resistance

3. Pancreas: insulin secretion

4. Liver: hepatic glucose output
 - Metformin ↓ HGO

TZDs Decrease Insulin Resistance at Target Tissues

- Decrease excessive fat breakdown
- Reduce free fatty acids
- Improve insulin-mediated glucose uptake
- Improve insulin sensitivity
- Suppress excessive glucose production
- ? Improve insulin secretion, defect in pancreas

Carbohydrate Digestive enzyme Glucose
Thiazolidinediones- Mechanism of Action

1. Intestine: glucose absorption
 - Intestine: glucose absorption secondary to digestion of carbohydrate
 - Insulin resistance
 - Blood glucose

2. Muscle and adipose tissue: glucose uptake
 - Insulin resistance
 - Blood glucose

3. Liver: hepatic glucose output
 - Insulin resistance
 - Blood glucose

4. Pancreas: insulin secretion

α-Glucosidase Inhibitors: Mechanism of Action

- **Liver**:
 - Lipoprotein metabolism
 - Increased adiponectin C-III (pp)
 - Increased adiponectin A-1, B-1
 - Increased fatty acid transporter protein 1 (pp)
 - Increased fatty acid translocase/CD36 (pp)
 - Decreased inflammation
 - Decreased pro-inflammatory protein (pp)
 - HIF-1α (pp, by means of interleukin-6)

- **Skeletal muscle**
 - Fatty acid metabolism
 - Increased CPT-1 (pp)
 - Increased GLUT-4
 - Increased phosphorylated 3-kinase
 - Increased PDK-4

- **Adipose tissue**
 - Adipocyte differentiation (pp)
 - Fatty acid uptake and storage (pp)
 - Increased fatty acid transport protein 1
 - Increased high-mobility group A protein
 - Other effects (pp)
 - Increased adiponectin
 - Decreased 1,25-cholecalciferol
 - Interleukin-6
 - Increased LP (pp)
 - Glucose uptake (pp)
 - Increased HIF-2α
 - Increased free fatty acids (pp)
 - Increased GLUT-4
 - Increased MAPK
 - Increased PI3K
 - Increased PI3K

Vascular wall

- Adhesion molecules
 - Decreased intracellular adhesion molecule-1 (pp)
 - Decreased vascular cell adhesion molecule-1 (pp)
 - Inflammation
 - Increased nuclear factor-kB (pp)
 - Decreased oxidative stress (pp)
 - Decreased endothelial (pp)

Cytokine activity

- Increased A20 (pp)
- Increased Jak-2 (pp)

Other

- Decreased TNF-α (pp)
- Decreased IL-6 (pp)
- Decreased interleukin-6 (pp)
- Decreased MAP-3 (pp)
- Decreased MCP-1 (pp)
- Decreased tissue factor (pp)

Yki-Jarvinen, NEJM 2004; 351: 1106-18

Amatruda JM. In: Diabetes Mellitus. 1996.
Oral therapy for type 2 diabetes: sites of action

Pharmacokinetics of Insulin Preparations

<table>
<thead>
<tr>
<th>Insulin Preparation</th>
<th>Onset</th>
<th>Peak</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>lispro, aspart</td>
<td><15 min</td>
<td>1-2 hr</td>
<td>3 hr</td>
</tr>
<tr>
<td>Regular</td>
<td>0.5-1 hr</td>
<td>2-3 hr</td>
<td>2-5 hr</td>
</tr>
<tr>
<td>NPH/Lente</td>
<td>2-4 hr</td>
<td>6-10 h</td>
<td>10-12 hr</td>
</tr>
<tr>
<td>70/30, 50/50</td>
<td>0.5-1 h</td>
<td>2-10 h</td>
<td>10-12 hr</td>
</tr>
<tr>
<td>H’log 75/25, N’log 70/30</td>
<td><15 min</td>
<td>1-8 hr</td>
<td>10-12 hr</td>
</tr>
<tr>
<td>Ultralente</td>
<td>4 hr</td>
<td>Varies</td>
<td>14-18 hr</td>
</tr>
<tr>
<td>Ins. Glargine</td>
<td>1-2 hr</td>
<td>Flat</td>
<td>24 hr</td>
</tr>
<tr>
<td>Ins. Detemir</td>
<td>1-2 hr</td>
<td>Flat</td>
<td>24 hr</td>
</tr>
</tbody>
</table>
INSULIN TACTICS

Short-acting Insulin Analogues:
Lispro and *Aspart*

Plasma Insulin Profiles

![Graphs showing plasma insulin profiles for Lispro and Aspart](image)

Glucagon-Like Peptide-1 (GLP-1)

Is an Important Incretin Hormone

- The “incretin effect” started the search
- Incretins
 - Gut hormones that enhance insulin secretion in response to food
 - Glucose-dependent insulin secretion
- GLP-1
 - Secreted from L cells of the intestines
 - Most well-characterized incretin
 - Diminished in type 2 diabetes
- Glucagon
 - Secreted from pancreatic alpha cells
 - Counterregulatory hormone to insulin
 - Elevated in type 2 diabetes

GLP-1 Modulates Numerous Functions in Humans

GLP-1: Secreted upon the ingestion of food

Promotes satiety and reduces appetite

α cells:
↓ Postprandial glucagon secretion

β cells:
Enhances glucose-dependent insulin secretion

Liver:
↓ Glucagon reduces hepatic glucose output

Stomach:
Helps regulate gastric emptying

Innovations in Diabetes Therapy

- Amylin
 - Stimulates secretion of insulin during episodes of elevated glucose
 - Does not promote secretion during low blood glucose levels
 - Improved safety profile over sulfonylureas
Amylin Is Co-Secreted With Insulin

Healthy adults; n = 6

Pramlintide Mimics Three Important Actions of Amylin That Impact Glucose Appearance

<table>
<thead>
<tr>
<th>Action</th>
<th>Amylin*</th>
<th>Pramlintide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibits inappropriately high postprandial glucagon secretion</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Slows gastric emptying</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Promotes satiety and reduces caloric intake</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

** For use in Type 1 and Type 2 Diabetics

*All amylin studies were performed in animals
Pramlintide Acetate Prescribing Information, 2005
Role of the Pharmacist

The Future of Pharmaceutical Care…

Project: Development of the Center for Innovation in Pharmacy Practice (CIPP) at the University of South Florida-College of Pharmacy
Role of the Pharmacist

- Provide medication expertise to patients and healthcare providers
- Serve as the “Trained Intermediary” between patients and providers (Tennessee lawsuit)
- Concurrent intervention with healthcare professionals to achieve optimal prescribing/administration
- Documentation of adverse effects and contraindications

Role of the Pharmacist

- Discharge medication counseling/documentation to achieve desired outcomes
- *Oversight of medication administration systems to achieve desired outcomes and enhance safety*
- Engage in Outcomes Data Collection and Research (IN-SCHAPE)
- Doctor of Pharmacy training is enhanced to provide Patient-Centered Disease state management (heart failure, diabetes, etc…)
Adverse Drug Reactions

- Over 106,000 people in the US die yearly from adverse reactions to correctly prescribed doses of drugs
- In top 6 leading causes of death in the US
- $4.3 billion per year cost in excess medical care

http://gale.genetics.utah.edu/units/pharma/phxwhatis/

A New Way to Practice Medicine?

- Currently, medications prescribed through “trial and error”
- With pharmacogenomics, individualizing prospective drug therapy to:
 - Maximize effectiveness
 - Minimize side effects
From “Genetics” to “Genomics”

Genetics
The science of heredity; refers to a single gene and its effects.

Genomics
The study of the entire genome including the complex interactions among multiple genes as well as between genes and the environment.

Use of Genetic Information

- To guide drug development and prescribing (pharmacogenomics)
 - Based on disease characteristics (somatic mutations)
 - HIV, OncotypeDx
 - Based on individuals’ genetic variation (inherited mutations)
 - depression-CYP450
- To predict disease risk
- Development of gene-based therapies
Come Join Us!!! IN-SHAPE Members will be available to:
- Provide Information about **Heart Attack and Stroke Prevention**
- Discuss options for Prevention and Treatment of **Heart Attack** and **Stroke**

Let’s all Get IN-SHAPE!!!
Participant Report of Diabetes

- Average BG: 105 ± 46 mg/dL
- Average A1c: 6.7 ± 1.3%
- 6% (12/201) reported a diagnosis of diabetes
- 36% (27/74) stated no diagnosis of diabetes, but screened positive for at least pre-diabetes
One More Important Question.........

Are we making a difference......

- Pharmacists are uniquely positioned to make important clinical medication management decisions in patient care.

- Inter-professional Healthcare teams = Improved Health Outcomes in the Future!