Neonatal Hydrotherapy
A Strategy to Improve Feeding and Movement in Neonates in the NICU Setting

Introduction

Pediatric Rehab Northwest, LLC
- Gig Harbor, WA

Rocky Mountain University of Health Professions
- Graduate Program Director
 - Doctor of Science in Pediatrics
 - Transitional Doctor of Physical Therapy (Pediatric Specialization)
 - Transitional Doctor of Occupational Therapy (Pediatric Specialization)

Rocky Mountain University
- Provo, UT
Plan
- Historical Perspective
- Hydrotherapy for Neonates
- Indications for Referral
- Physiological Prerequisites for Hydrotherapy

Plan
- Equipment
- Hydrotherapy Techniques
- Clinical Outcomes
- Research Outcomes
- Your experience, perspectives, questions

Historical Perspective
Hydrotherapy in Health Care
Historical Perspective

- Hydrotherapy: Greek derivation
- “hydro” = water
- “therapia” = healing

Hippocrates (460-375 BC)

- Contrast Baths (varying temperatures)
- Disease Management

Poliomyelitis 1940’s - 1950’s

- Physical Therapy Review, 1946
- Iron Lung & Hubbard Tank
Exercise in Water

- Medium for exercise
- Assisted or Resistive Mov’t
 - Buoyancy
 - Surface Tension

Exercise in Water

- Aquatic Section of the American Physical Therapy Association
- Aquatic Physical Therapy in Pediatrics

Winkel’s Warming Bath 1882

- Early model of incubator
- Warm water immersion to assist thermoregulation
Childbirth Without Violence

- Frederick Leboyer, 1975
- Gentle entry into extrauterine environment
- Enhanced interaction & attachment with parent

Neonatal Hydrotherapy in the NICU setting

- Adjunct to Neonatal Physical Therapy Program
- Early 1980’s
- Madigan Army Medical Center, Tacoma, WA

Collaborative Problem Solving

- Collaborator
- Carita Bird RN, MSN
- Nurse Manager of NICU, Madigan Army Medical Center
Original Case (1981)
Neonatal Hydrotherapy

- Chronological age 5 months
- Corrected age 2.5 months
- 1040 gm
- 30 wk gestation
- BPD; tracheomalacia; tracheostomy
- Anemia; hyperbilirubinemia
- Osteomyelitis talus
- Marked hypertonus

Indications for Referral

- Tone or movement abnormalities
- Joint ROM or muscle mobility limitations
- Behavioral state impairment
- Feeding impairment

Indications for Referral

- Exam of buoyancy assisted movement
 - Spinal Muscular Atrophy
 - Prader Willi syndrome
 - Hypertonia
 - Contractures (Arthrogryposis)
Prerequisites for Hydrotherapy

- Medical stability
- Discontinued
 - IV lines
 - Ventilator
 - Extremity casts
- Resolved apnea, bradycardia, & desaturation episodes

Prerequisites for Hydrotherapy

- Absent:
 - temperature instability
 - open wounds
- Management of umbilical cord:
 - transparent dressing i.e. “op site”
 - NANN guidelines on skin care: no precautions on immersion bath

Equipment

- Bassinette without mattress
- Overhead radiant heater
Equipment

- Neonatal vital signs monitor (Dynamap)
 - Mean heart rate
 - Mean arterial pressure
- Thermometer:
 - Digital or Floating (hot tub or pool model)

Water Temperature

- 100 – 101 degrees F
- Depends on
 - Size of tub
 - Duration of hydrotherapy session (maximum of 10 minutes advised)
 - Analyze water temp after 10 minutes

Duration of Hydrotherapy

- 10 minutes
- Shorter duration
 - If water cools
 - If desired effects achieved earlier
 - If infant becomes borderline unstable physiologically or behaviorally
Technique

• Apply blood pressure cuff to leg

• Swaddle in flexed, midline position

• Adjustment to immersion...quiet & usually without movement

Technique

• 2 caregivers

• graded, small excursion guided mov’t in one area while stabilizing opposite end of body

• Encourage active movement within & out of partial swaddling

Technique

• Guided by infant’s
 - Physiological state
 - Behavioral stability

• Stop if infant cannot be consoled and brought to calm state
Technique

- Guided by infant’s
 - Physiological state
 - Behavioral stability

Technique

- Infants must feel stable before tolerating mov’t in water
- Sitting against corner or side of tub for water adjustment

Cases

- Chondrodysplasia Punctata
- Arthrogryposis Multiplex Congenita
- Gastrochisis
- Hypertonus interfering w/ hip jt exam
- Hypotonus: Prader Willi
- Pentology of Cantrell
- Feeding Impairment
- Infants on ventilators
- Prenatal polydrug exposure
Chondrodysplasia Punctata

- High fracture risk
 - Abnormal cartilage development
 - Stippled calcifications on spine & ribs
- Flexion contractures knees & elbows
- Icthyosis
- Term gestation

Chondrodysplasia Punctata

- Guided movement in supported positions
 - Supine
 - Sidelying
 - Prone

Note: term gestation; graduated from using swaddling in water

Arthrogryposis Multiplex Congenita

- Multiple congenital contractures
- High fracture risk
- Myopathy often present

From slide file of Holly Cintas PhD, PT
Gastroschisis
- Congenital defect in abdominal wall
- Prolonged supine positioning with intestines in silo for elevation & gradual compression
- Abdominal incision
- Intolerance of prone position

Hypertonus
- Orthopedist unable to examine hip stability without triggering marked hypertonus
- Persistently adducted hip position
- Exam of hip abduction in warm water

Hypotonus or Weakness
- Minimal to no spontaneous movement
- Buoyancy of water supports trace to poor (2/5) muscle strength
- Active movement through partial range in water
Pentology of Cantrell

- Ectopic heart
- Multiple congenital heart deformities
- Not a candidate for transplant
- Palliative care
- Gentle death at home at 2 mo of age

Feeding Impairment

- Lethargic behavioral state
- Not awakening for feeding
- Drowsy state during feeding

Infants Requiring Supplemental Oxygen

- Medical clearance
- Preestablished safe vital signs range
- Nurse collaborator to assist
- Careful evaluation of risks vs benefits
- Is it therapeutic?
Infants on Ventilators

- Site visit experience
 - Crying
 - Relaxation & sleep confused with fatigue and exhaustion
- Anecdotal reports
- Priority for future research

Infants with Prenatal Polydrug Exposure

- Overstimulated and irritable with diaper changes, feeding, bathing
- Improved behavioral stability with swaddled, warm water immersion and bathing procedures vs. sponge baths

Clinical Outcomes (observations)

- Improved extremity movement & joint ROM
- Increased visual & auditory interaction
- Increased feeding proficiency
- Enhanced parent participation
Research Outcomes

- Feeding Effects
- Physiological Effects
 - Pilot Study
 - Current Study

Feeding Proficiency in Preterm Neonates Following Hydrotherapy in the NICU Setting

Jane K. Sweeney PT, PhD, PCS
Madigan Army Medical Center, Tacoma, WA
and
Rocky Mountain University of Health Professions
Provo, UT

Purpose

- Investigate the effects of hydrotherapy on feeding performance of preterm neonates in a neonatal intensive care unit
Research Question

- What differences exist in the feeding performance of preterm neonates after hydrotherapy compared to feeding after a rest period?

Sample

- 31 preterm neonates at 32 to 36 wks postconceptual age at the time of testing
- 9 were high risk (SGA, IVH, PVL, RDS; chromosomal abnormality)
- 21 were low risk (typically developing; uncomplicated neonatal course)

Inclusion Criteria

- Postconceptual age of 31 to 36 weeks
- History of one oral feeding in past 24 hours
- Medical stability confirmed by attending neonatologist and nurse
Inclusion Criteria

- History of one oral feeding in past 24 hours
- Postconceptual age less than 37 wks
- Absence of conditions which anatomically alter feeding function:
 - Cleft lip or palate
 - Micrognathia

- All conditions which anatomically alter feeding function:
 - Cleft lip or palate
 - Micrognathia

- Absence of conditions or equipment which prohibit water immersion:
 - Intravenous lines
 - Open wounds
 - Retained umbilical cord
 - Myelodysplasia
 - Extremity casts
Instrumentation
- Hydrotherapy tub: plastic bassinette without mattress
- Overhead radiant heater
- Floating thermometer
- Stopwatch

Physiological Monitoring
- Neonatal Vital Signs Monitor with plastic cuff (during hydrotherapy)
- Nellcor 200 oximeter
- Temperature
- Gould TA 5000 eight channel physiological recorder

Design
- Prospective cross over design
- Within subject; each subject serving as own control
- Randomized order in 2 consecutive days
 - Hydrotherapy before feeding
 - Rest period before feeding
Nurses conducting the feeding were blinded to treatment order.

Procedure

- Water temperature: 101 degrees Fahrenheit
- Infant is swaddled in semi-flexed position with head and extremities at midline

Procedure

- Duration: 10 minutes
 - Behavioral adaptation to water
 - Intermittent, slow, guided movement within or out of swaddling blanket
 - Two practitioners stabilize and move infant
Four Consecutive Phases

- Initial baseline: 10 minutes
- Hydrotherapy or rest period: 10 minutes
- Bottle feeding: variable (40 minutes maximum)
- Recovery baseline: 10 minutes

Data Collection

- Hydrotherapy: two pediatric physical therapists for all subjects
- Bottle Feeding: each infant’s neonatal nurse blinded to the treatment order (hydrotherapy vs. rest period)

Data Collection

- Two pediatric physical therapists conducted the hydrotherapy procedures for all subjects.
Results

• 100% of required feeding volume was ingested after both hydrotherapy and rest period

• Decreased (p<.004) mean duration of feeding after hydrotherapy (702 sec) compared to the rest period (912 sec)

• Increased (p<.026) mean daily weight gain after hydrotherapy (47.2 gm) compared to rest period (30.1 gm)

Results

• 100% of the required feeding volume was ingested after both hydrotherapy and rest period

• Increased (p<.026) mean daily weight gain occurred after hydrotherapy (47.2 gm) compared to rest period (30.1 gm)

• Improved feeding efficiency occurred after hydrotherapy
 - Decreased (p<.004) mean duration of feeding after hydrotherapy (702 sec) compared to the rest period (912 sec)
Conclusions

- Hydrotherapy of 10 minutes duration is an effective intervention for improving feeding efficiency in preterm infants.
- Increased short-term weight gain occurred after hydrotherapy.
- Compromised feeding or weight loss from post-hydrotherapy fatigue or overstimulation were not found.

Grant Support

- National Institute for Disability and Rehabilitation Research
- Section on Pediatrics, American Physical Therapy Association
- Research Assistants: Jeanne Fischer, PT and Allison Yocum, PT, MS, PCS
- Consultants: Lori Loan, PhD, RNC, Susan Blackburn, PhD, RN, C, FAAN, and Carolyn Heriza, PT, EdD

Physiological Effects

- Pilot study
 - 3 medically stable neonates
 - 20 hydrotherapy sessions
Pilot Study

- Measured physiological changes before, during, & after
 - Immersion in water without movement
 - Hydrotherapy (gentle facilitated movement)

Hydrotherapy Pilot Study

physiological changes from baseline

- 7% increase in heart rate
 - HR 150 baseline + 7% = 161
 - HR 160 " = 172
 - HR 170 " = 182
 - HR 180 " = 193
- 7% increase in blood pressure

Hydrotherapy Pilot Study

Conclusions

- Judicious referral for hydrotherapy
- Medical stability required
- Physiological monitoring advised during hydrotherapy
- Documentation of baseline physiological state is critical for measuring changes during & after hydrotherapy
Future Research

- Swaddling vs. no swaddling
- Hydrotherapy effects on breast feeding
- Varying durations of hydrotherapy
- Uncoupling stimuli (visual; auditory; kinesthetic; tactile)
- Other questions?

Questions, Experiences, Perspectives

Conclusions

- Useful adjunct to neonatal therapy services
- Judicious selection of infants based on physiological stability
- Excellent activity for empowering parents